Area-specific laminar distribution of cortical feedback neurons projecting to cat area 17: quantitative analysis in the adult and during ontogeny.

نویسندگان

  • A Batardiere
  • P Barone
  • C Dehay
  • H Kennedy
چکیده

Corticocortical pathways can be classified as feedback and feedforward, in part according to the laminar distribution of the parent cell bodies. Here, we have developed exhaustive sampling procedures to determine unambiguously this laminar distribution. This shows that individual extrastriate areas in the adult cat have highly stereotyped proportions of supragranular layer neurons with respect to the total population of neurons back-projecting to area 17. During development, these adult laminar patterns emerge from an initially uniform radial distribution through a process of selective reorganization, which is highly specific to each area. Injections of fluorescent retrograde tracers were made in area 17. In areas 19, 20, posteromedial lateral suprasylvian area, and anteromedial lateral suprasylvian area, we defined a projection zone as the region containing retrogradely labeled neurons. In the neonate, counts of labeled neurons throughout the projection zones show constant percentages of 40% in the supragranular layers. During development, there is an area-specific reduction in the percentage of supragranular labeled neurons generating the laminar distributions characteristic of each area. Numbers of labeled neurons were estimated at different eccentricities of the projection zone. This finding indicates that during development there is a relative decrease in the numbers of labeled neurons of the periphery of the projection zone in the supragranular layers but not in the infragranular layers. This decrease is accompanied by a relative decrease in the dimensions of the supragranular projection zone with respect to the infragranular projection zone. These findings suggest that each extrastriate area precisely adjusts the proportions of supragranular layer neurons back-projecting to striate cortex in part by developmental changes in the divergence-convergence values of individual neurons. This shaping of corticocortical connectivity occurs relatively late in postnatal development and could, therefore, be under epigenetic control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey.

Area 17 in the neonate of numerous species receives projections from cortical areas that do not project to area 17 in the adult. To investigate if this were the case in the developing primate, we have made injections of retrograde tracers in area 17 of newborn monkeys (Macaca irus) and examined the areal distribution of labeled neurons. Neurons projecting to area 17 were found to be restricted ...

متن کامل

Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers.

Using the retrograde fluorescent tracers Fast Blue and Diamidino Yellow we have studied the callosal and ipsilateral corticocortical connections between the cat's area 17/18 border region and the posteromedial lateral suprasylvian visual area (PMLS), as well as the callosal connections of each of these regions with its contralateral homologue. The main goal was to determine whether single corti...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

The projection from V1 to extrastriate area 21a: a second patchy efferent pathway colocalizes with the CO blob columns in cat visual cortex.

The different patchy organizations of neurons projecting from primary visual cortex (area 17) to the various extrastriate areas may contribute to functional differences in the output to each of these areas. The pattern of neurons projecting to extrastriate area 21a was examined using large injections of retrograde tracers and compared to the pattern shown by neurons projecting to the lateral su...

متن کامل

The distribution of the cells of origin of callosal projections in cat visual cortex.

The distribution of neurons projecting through the corpus callosum (callosal neurons) was examined in retinotopically defined areas of cat visual cortex. As many callosal neurons as possible were labeled in a single animal by surgically dividing the posterior two-thirds of the corpus callosum and exposing the cut ends of callosal axons to horseradish peroxidase. The distribution of callosal neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 396 4  شماره 

صفحات  -

تاریخ انتشار 1998